42 research outputs found

    General purpose algorithms for characterization of slow and fast phase nystagmus

    Get PDF
    In the overall aim for a better understanding of the vestibular and optokinetic systems and their roles in space motion sickness, the eye movement responses to various dynamic stimuli are measured. The vestibulo-ocular reflex (VOR) and the optokinetic response, as the eye movement responses are known, consist of slow phase and fast phase nystagmus. The specific objective is to develop software programs necessary to characterize the vestibulo-ocular and optokinetic responses by distinguishing between the two phases of nystagmus. The overall program is to handle large volumes of highly variable data with minimum operator interaction. The programs include digital filters, differentiation, identification of fast phases, and reconstruction of the slow phase with a least squares fit such that sinusoidal or psuedorandom data may be processed with accurate results. The resultant waveform, slow phase velocity eye movements, serves as input data to the spectral analysis programs previously developed for NASA to analyze nystagmus responses to pseudorandom angular velocity inputs

    Characterization of slow and fast phase nystagmus

    Get PDF
    A current literature review of the analog and digital process of vestibular and optical kinetic nystagmus reveals little agreement in the methods used by various labs. The strategies for detection of saccade (fast phase velocity component of nystagmus) vary between labs, and most of the process have not been evaluated and validated with a standard database. A survey was made of major vestibular labs in the U.S. that perform computer analyses of vestibular and optokinetic reflexes to stimuli, and a baseline was established from which to standardize data acquisition and analysis programs. The concept of an Error Index was employed as the criterium for evaluating the performance of the vestibular analysis software programs. The performance criterium is based on the detection of saccades and is the average of the percentages of missed detections and false detections. Evaluation of the programs produced results for lateral gaze with saccadic amplitude of one, two, three, five, and ten degrees with various signal-to-noise ratios. In addition, results were obtained for sinusoidal pursuit of 0.05, 0.10, and 0.50 Hz with saccades from one to ten degrees at various signal-to-noise ratios. Selection of the best program was made from the performance in the lateral gaze with three degrees of saccadic amplitude and in the 0.10 Hz sinusoid with three degrees of saccadic amplitude

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Retigeric Acid B Exhibits Antitumor Activity through Suppression of Nuclear Factor-κB Signaling in Prostate Cancer Cells in Vitro and in Vivo

    Get PDF
    Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-xL, cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well

    Searches for TeV counterparts to classical gamma-ray bursts

    Full text link
    Intense effort has gone into the observation of optical, radio and X-ray GRB counterparts, either simultaneous to the burst or as quasi-steady remnants. Here we report on a similar study at higher energies of 250 GeV and above using ground-based telescopes. Imaging atmospheric Cherenkov telescopes have achieved great sensitivity and now complement observations by orbiting telescopes such as CGRO. Previous studies of bursts by the Whipple Collaboration (4) combined with recent improvements to the telescope, indicate that sensitivity to a fluence of 6×10−9 erg-cm−26×10−9erg-cm−2 can be achieved. Observations by the Whipple Collaboration of nine BATSE positions, one within 2 minutes of the BATSE burst, using coordinates distributed through BACODINE will be reported. Analysis techniques will be described and an upper limit to the high-energy delayed or extended emission of observed candidates will be calculated. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87365/2/603_1.pd

    Bmi-1 Absence Causes Premature Brain Degeneration

    Get PDF
    Bmi-1, a polycomb transcriptional repressor, is implicated in cell cycle regulation and cell senescence. Its absence results in generalized astrogliosis and epilepsy during the postnatal development, but the underlying mechanisms are poorly understood. Here, we demonstrate the occurrence of oxidative stress in the brain of four-week-old Bmi-1 null mice. The mice showed various hallmarks of neurodegeneration including synaptic loss, axonal demyelination, reactive gliosis and brain mitochondrial damage. Moreover, astroglial glutamate transporters and glutamine synthetase decreased in the Bmi-1 null hippocampus, which might contribute to the sporadic epileptic-like seizures in these mice. These results indicate that Bmi-1 is required for maintaining endogenous antioxidant defenses in the brain, and its absence subsequently causes premature brain degeneration

    Identification of Piwil2-Like (PL2L) Proteins that Promote Tumorigenesis

    Get PDF
    PIWIL2, a member of PIWI/AGO gene family, is expressed in the germline stem cells (GSCs) of testis for gametogenesis but not in adult somatic and stem cells. It has been implicated to play an important role in tumor development. We have previously reported that precancerous stem cells (pCSCs) constitutively express Piwil2 transcripts to promote their proliferation. Here we show that these transcripts de facto represent Piwil2-like (PL2L) proteins. We have identified several PL2L proteins including PL2L80, PL2L60, PL2L50 and PL2L40, using combined methods of Gene-Exon-Mapping Reverse Transcription Polymerase Chain Reaction (GEM RT-PCR), bioinformatics and a group of novel monoclonal antibodies. Among them, PL2L60 rather than Piwil2 and other PL2L proteins is predominantly expressed in various types of human and mouse tumor cells. It promotes tumor cell survival and proliferation in vitro through up-regulation of Stat3 and Bcl2 gene expressions, the cell cycle entry from G0/1 into S-phase, and the nuclear expression of NF-κB, which contribute to the tumorigenicity of tumor cells in vivo. Consistently, PL2L proteins rather than Piwil2 are predominantly expressed in the cytoplasm or cytoplasm and nucleus of euchromatin-enriched tumor cells in human primary and metastatic cancers, such as breast and cervical cancers. Moreover, nuclear PL2L proteins are always co-expressed with nuclear NF-κB. These results reveal that PL2L60 can coordinate with NF-κB to promote tumorigenesis and might mediate a common pathway for tumor development without tissue restriction. The identification of PL2L proteins provides a novel insight into the mechanisms of cancer development as well as a novel bridge linking cancer diagnostics and anticancer drug development

    Immobilization of pregastric esterases in a hollow fiber reactor for continuous production of lipolysed butteroil

    No full text
    Lingual Upases from calf, lamb and goal were semi-purified by cold storage and microfiltralion, and subsequently immobilized by physical adsorption on hollow fibers fabricated of microporous polypropylene. The immobilized lipases were employed in a hollow fiber membrane reactor to effect the continuous hydrolysis of a butterfat fraction that remains liquid at 18°C. The goat lipase showed higher lipolytic activity than the other two, but all three enzymes had good selectivilies for short-chain fatty acids. No deactivalion was observed for any of the immobilized enzymes during 5 d of continuous operation. A process based on this technology offers a number of advantages for the commercial production of lipolysed butteroil. © 1995 Academic Press Limited
    corecore